1968年,Knuth提出说能否将该问题的空间复杂度压缩到O(1),同时原树的结构不能改变。大约十年后,1979年,Morris在《Traversing Binary Trees Simply and Cheaply》这篇论文中用一种Threaded Binary Tree的方法解决了该问题。
每次访问root左子树之前,先找到左子树里面最右面的点,并把其 right 指针连到 root 上;左子树遍历完这个点之后,再把这个多出来的指针拆掉。
Morris in-order 流程,利用 threaded binary tree.
public class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<Integer>();
TreeNode cur = root;
while(cur != null){
if(cur.left == null){
list.add(cur.val);
cur = cur.right;
} else {
TreeNode prev = cur.left;
while(prev.right != null && prev.right != cur){
prev = prev.right;
}
if(prev.right == null){
prev.right = cur;
// Uncomment for pre-order
// list.add(cur.val);
cur = cur.left;
} else {
prev.right = null;
// Uncomment for in-order
// list.add(cur.val);
cur = cur.right;
}
}
}
return list;
}
}
于是这道要求用 O(n) 时间 O(1) 空间的题就可以真正按照题目要求解决了。
public class Solution {
public void recoverTree(TreeNode root) {
TreeNode cur = root;
TreeNode prevNode = null;
TreeNode p = null;
TreeNode q = null;
while(cur != null){
if(cur.left == null){
if(prevNode != null && prevNode.val >= cur.val){
if(p == null) p = prevNode;
q = cur;
}
// Set prev node for scanning
prevNode = cur;
cur = cur.right;
} else {
TreeNode prev = cur.left;
while(prev.right != null && prev.right != cur){
prev = prev.right;
}
if(prev.right == null){
prev.right = cur;
cur = cur.left;
} else {
prev.right = null;
if(prevNode != null && prevNode.val >= cur.val){
if(p == null) p = prevNode;
q = cur;
}
// Set prev node for scanning
prevNode = cur;
cur = cur.right;
}
}
}
swap(p, q);
}
private void swap(TreeNode p, TreeNode q){
if(p == null || q == null) return;
int temp = p.val;
p.val = q.val;
q.val = temp;
}
}
Morris 的 post-order 遍历还要建一个 dummy node 以及反序输出。。感觉不是非常现实。。。有空复习的时候我再研究研究这种 trick 吧。