Algorithm Notes
  • Introduction
  • Search & Backtracking 搜索与回溯
    • Tree 与 BackTracking 的比较
    • Subsets, Combination 与 Permutation
    • Subsets & Combinations & Combination Sum
    • 枚举法
    • N 皇后 + 矩阵 Index Trick
    • Sudoku 数独 + 矩阵 Index Trick
    • Word Ladder I & II
    • Number of ways 类
    • DFS flood filling
    • Strobogrammatic 数生成
    • String 构造式 DFS + Backtracking
    • Word Pattern I & II
    • (G) Binary Watch
    • (FB) Phone Letter Combination
    • 常见搜索问题的迭代解法
  • String,字符串类
    • 多步翻转法
    • Substring 结构和遍历
    • Palindrome 问题
    • Palindrome Continued
    • String / LinkedList 大数运算
    • 序列化与压缩
    • 5/24 String 杂题
    • Knuth–Morris–Pratt 字符串匹配
    • Lempel–Ziv–Welch 字符串压缩算法
    • (G) Decode String
    • (G) UTF-8 Validation
  • Binary Tree,二叉树
    • 各种 Binary Tree 定义
    • LCA 类问题
    • 三序遍历,vertical order
    • Post order traversal 的应用
    • Min/Max/Balanced Depth
    • BST
    • 子树结构
    • Level Order traversal
    • Morris 遍历
    • 修改结构
    • 创建 / 序列化
    • 子树组合,BST query
    • 路径与路径和
    • NestedInteger 类
    • (FB) 从 Binary Tree Path 看如何递归转迭代
    • (FB) Binary Tree Path 比较路径大小
    • 比较好玩的 Binary Tree 概率题
  • Segment & Fenwick Tree,区间树
    • Segment Tree 基础操作
    • Segment Tree 的应用
    • Fenwick Tree (Binary Indexed Tree)
    • Range Sum Query 2D - Immutable
  • Union-Find,并查集
    • Union-Find,并查集基础
    • Union-Find, 并查集应用
  • Dynamic Programming, 动态规划
    • 6/20, 入门 House Robber
    • 7/12, Paint Fence / House
    • 6/24, 滚动数组
    • 6/24, 记忆化搜索
    • 6/24, 博弈类 DP
    • 博弈类DP, Flip Game
    • 6/25, 区间类DP
    • 6/27, subarray 划分类,股票
    • 7/2, 字符串类
    • Bomb Enemies
    • 8/2,背包问题
    • (G) Max Vacation
    • (11/4新增) AST 子树结构 DP
  • LinkedList,链表
    • 6/9, LinkedList,反转与删除
    • 6/11, LinkedList 杂题
    • (FB) 链表的递归与倒序打印
  • LinkedIn 面经,算法题
    • 6/17, LinkedIn 面经题
    • 6/28, LinkedIn 面经题
    • 7/6, LinkedIn 面经
    • Shortest Word Distance 类
    • DFA Parse Integer
  • Two Pointers,双指针
    • 3 Sum, 3 Sum Closest / Smaller, 4 Sum
    • 对撞型,灌水类
    • 对撞型,partition类
    • Wiggle Sort I & II
    • 双指针,窗口类
    • 双指针,窗口类
    • Heap,排序 matrix 中的 two pointers
  • Bit & Math,位运算与数学
    • Bit Manipulation,对于 '1' 位的操作
    • Math & Bit Manipulation, Power of X
    • 坐标系 & 数值计算类
    • Add Digits
    • 用 int 做字符串 signature
  • Interval 与 扫描线
    • Range Addition & LCS
    • 7/5, Interval 类,扫描线
  • Trie,字典树
    • 6/9, Trie, 字典树
  • 单调栈,LIS
    • 4/13 LIS
    • 栈, 单调栈
    • Largest Divisible Subset
  • Binary Search 类
    • Matrix Binary Search
    • Array Binary Search
    • Find Peak Element I & II
    • **Median of Two Sorted Arrays
  • Graph & Topological Sort,图 & 拓扑排序
    • 有向 / 无向 图的基本性质和操作
    • 拓扑排序, DFS 做法
    • 拓扑排序, BFS 做法
    • Course Schedule I & II
    • Alien Dictionary
    • Undirected Graph, BFS
    • Undirected Graph, DFS
    • 矩阵,BFS 最短距离探索
    • 欧拉回路,Hierholzer算法
    • AI, 迷宫生成
    • AI, 迷宫寻路算法
    • (G) Deep Copy 无向图成有向图
  • 括号与数学表达式的计算
  • Iterator 类
  • Majority Element,Moore's Voting
  • Matrix Inplace Operations
  • 常见数据结构设计
  • (G) Design / OOD 类算法题
  • 随机算法 & 数据结构
  • (FB) I/O Buffer
  • (FB) Simplify Path, H-Index I & II
  • (FB) Excel Sheet, Remove Duplicates
  • Integer 的构造,操作,序列化
  • Frequency 类问题
  • Missing Number 类,元素交换,数组环形跳转
  • 8/10, Google Tag
  • (FB) Rearrange String k Distance Apart
  • Abstract Algebra
    • Chap1 -- Why Abstract Algebra ?
    • Chap2 -- Operations
    • Chap3 -- The Definition of Groups
Powered by GitBook
On this page
  • Range Sum Query - Mutable
  • Range Sum Query - Immutable
  • Range Sum Query 2D - Mutable

Was this helpful?

  1. Segment & Fenwick Tree,区间树

Segment Tree 的应用

PreviousSegment Tree 基础操作NextFenwick Tree (Binary Indexed Tree)

Last updated 4 years ago

Was this helpful?

  • 最适合用 Segment tree 的情形最好同时满足以下三点:

    • 区间查找 min/max

    • 频繁 update

    • 频繁 query

非常不错的一道题,Segment Tree的常用操作都考到了。

这题更快的做法是用 Binary Indexed Tree,有空我研究下。

public class NumArray {
    private class SegmentTreeNode{
        int start;
        int end;
        int sum;
        SegmentTreeNode left, right;

        public SegmentTreeNode(){}
        public SegmentTreeNode(int start, int end, int sum){
            this.start = start;
            this.end = end;
            this.sum = sum;
            this.left = null;
            this.right = null;
        }
    }

    SegmentTreeNode root;

    public NumArray(int[] nums) {
        root = buildTree(nums, 0, nums.length - 1);
    }

    private SegmentTreeNode buildTree(int[] nums, int start, int end){
        if(nums == null || nums.length == 0) return null;
        if(start == end) return new SegmentTreeNode(start, end, nums[start]);

        int mid = start + (end - start) / 2;

        SegmentTreeNode left = buildTree(nums, start, mid);
        SegmentTreeNode right = buildTree(nums, mid + 1, end);

        SegmentTreeNode root = new SegmentTreeNode(start, end, left.sum + right.sum);
        root.left = left;
        root.right = right;

        return root;
    }

    void update(int i, int val) {
        update(root, i, val);
    }

    private void update(SegmentTreeNode root, int i, int val){
        if(root == null) return;
        if(i < root.start) return;
        if(i > root.end) return;

        if(root.start == i && root.end == i) {
            root.sum = val;
            return;
        }

        update(root.left, i, val);
        update(root.right, i, val);

        root.sum = root.left.sum + root.right.sum;
    }

    public int sumRange(int i, int j) {
        return sumRange(root, i, j);
    }

    private int sumRange(SegmentTreeNode root, int i, int j){
        if(root == null) return 0;
        if(i > root.end) return 0;
        if(j < root.start) return 0;

        i = Math.max(i, root.start);
        j = Math.min(j, root.end);

        if(root.start == i && root.end == j) return root.sum;

        int left = sumRange(root.left, i, j);
        int right = sumRange(root.right, i, j);

        return left + right;
    }
}


// Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);

这题从类型上讲,看着和上一题非常像。然而其实这题因为需要的操作比较简单,其实就是一个 prefix sum 数组的 dp ...

教育了我们 segment tree 虽屌,也不要一言不合就随便用。。

  • 最适合用 Segment tree 的情形最好同时满足以下三点:

    • 区间查找

    • 频繁 update

    • 频繁 query

  • 在只有区间没有 update 的情况下,其实是一个一维/二维的 DP 问题,并不能体现出 segment tree 的优势。

  • 前缀和数组记得在最前面加上 sum = 0 的 padding.

public class NumArray {
    int[] prefixSum;

    public NumArray(int[] nums) {
        if(nums == null || nums.length == 0) return;

        prefixSum = new int[nums.length + 1];
        prefixSum[0] = 0;
        prefixSum[1] = nums[0];
        for(int i = 1; i < nums.length; i++){
            prefixSum[i + 1] = prefixSum[i] + nums[i];
        }
    }

    public int sumRange(int i, int j) {
        return prefixSum[j + 1] - prefixSum[i];
    }
}


// Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.sumRange(1, 2);

这道题当然可以把矩阵降维之后用 segment tree 解,把一个 region 拆分成若干个 interval of rows 然后把结果加起来,但是很慢。

这题既体现了 segment tree的应用,又暴露了 segment tree的问题。

  • width = m, height = n, 现有 1D segment tree 的复杂度

    • build O(mn)

    • update O(log(mn))

    • query O(n * log (mn))

public class NumMatrix {

    private class SegmentTreeNode{
        int start;
        int end;
        int sum;
        SegmentTreeNode left;
        SegmentTreeNode right;
        public SegmentTreeNode(){}
        public SegmentTreeNode(int start, int end, int sum){
            this.start = start;
            this.end = end;
            this.sum = sum;
            this.left = null;
            this.right = null;
        }
    }

    int width;
    int height;
    SegmentTreeNode root;

    private int getIndex(int x, int y){
        return x * width + y;
    }

    public NumMatrix(int[][] matrix) {
        if(matrix == null || matrix.length == 0) return;

        height = matrix.length;
        width = matrix[0].length;

        root = buildTree(matrix, 0, width * height - 1);
    }

    private SegmentTreeNode buildTree(int[][] matrix, int start, int end){
        if(start == end) return new SegmentTreeNode(start, end, matrix[start / width][start % width]);

        int mid = start + (end - start) / 2;
        SegmentTreeNode left = buildTree(matrix, start, mid);
        SegmentTreeNode right = buildTree(matrix, mid + 1, end);
        SegmentTreeNode root = new SegmentTreeNode(start, end, left.sum + right.sum);
        root.left = left;
        root.right = right;

        return root;
    }

    public void update(int row, int col, int val) {
        int index = getIndex(row, col);
        update(root, index, val);
    }

    private void update(SegmentTreeNode root, int index, int val){
        if(root == null) return ;
        if(index < root.start) return;
        if(index > root.end) return;

        if(root.start == index && root.end == index){
            root.sum = val;
            return;
        }

        update(root.left, index, val);
        update(root.right, index, val);

        root.sum = root.left.sum + root.right.sum;
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        int sum = 0;
        if(col1 == 0 && col2 == width - 1){
            sum = querySum(root, getIndex(row1, col1), getIndex(row2, col2));
        } else {
            for(; row1 <= row2; row1++){
                sum += querySum(root, getIndex(row1, col1), getIndex(row1, col2));
            }
        }


        return sum;
    }

    private int querySum(SegmentTreeNode root, int start, int end){
        if(root == null) return 0;
        if(start > root.end) return 0;
        if(end < root.start) return 0;

        start = Math.max(start, root.start);
        end = Math.min(end, root.end);

        if(start == root.start && end == root.end) return root.sum;

        int left = querySum(root.left, start, end);
        int right = querySum(root.right, start, end);

        return left + right;
    }
}


// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix = new NumMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.update(1, 1, 10);
// numMatrix.sumRegion(1, 2, 3, 4);

因为这题更适合用 解,另一个教程贴在,还有,加上这个陈老师推荐的

Fenwick tree can also be used to update and query subarrays in multidimensional arrays with complexity , where d is number of dimensions and n is the number of elements along each dimension.

Range Sum Query - Mutable
Range Sum Query - Immutable
Range Sum Query 2D - Mutable
binary index tree
这里
这里
中文帖子